20 research outputs found

    Verification, Analytical Validation, and Clinical Validation (V3): The Foundation of Determining Fit-for-Purpose for Biometric Monitoring Technologies (BioMeTs)

    Get PDF
    Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital medicine field

    A Critical Role for Syk in Signal Transduction and Phagocytosis Mediated by Fcγ Receptors on Macrophages

    Get PDF
    Receptors on macrophages for the Fc region of IgG (FcγR) mediate a number of responses important for host immunity. Signaling events necessary for these responses are likely initiated by the activation of Src-family and Syk-family tyrosine kinases after FcγR cross-linking. Macrophages derived from Syk-deficient (Syk−) mice were defective in phagocytosis of particles bound by FcγRs, as well as in many FcγR-induced signaling events, including tyrosine phosphorylation of a number of cellular substrates and activation of MAP kinases. In contrast, Syk− macrophages exhibited normal responses to another potent macrophage stimulus, lipopolysaccharide. Phagocytosis of latex beads and Escherichia coli bacteria was also not affected. Syk− macrophages exhibited formation of polymerized actin structures opposing particles bound to the cells by FcγRs (actin cups), but failed to proceed to internalization. Interestingly, inhibitors of phosphatidylinositol 3-kinase also blocked FcγR-mediated phagocytosis at this stage. Thus, PI 3-kinase may participate in a Syk-dependent signaling pathway critical for FcγR-mediated phagocytosis. Macrophages derived from mice deficient for the three members of the Src-family of kinases expressed in these cells, Hck, Fgr, and Lyn, exhibited poor Syk activation upon FcγR engagement, accompanied by a delay in FcγR-mediated phagocytosis. These observations demonstrate that Syk is critical for FcγR-mediated phagocytosis, as well as for signal transduction in macrophages. Additionally, our findings provide evidence to support a model of sequential tyrosine kinase activation by FcγR's analogous to models of signaling by the B and T cell antigen receptors

    Utility of Huntington's disease assessments by disease stage: floor/ceiling effects

    Get PDF
    Introduction: An understanding of the clinimetric properties of clinical assessments, including their constraints, is critical to sound clinical study and trial design. Utilizing data from Enroll-HD—a global, prospective HD observational study and clinical research platform—we examined several well-established HD clinical assessments across all stages of disease for evidence of instrument constraints, specifically floor/ceiling effects, to inform selection of appropriate instruments for use in future studies/trials and identify gaps in instrument utility over the life-course of the disease. Material and Methods: Analyzing publicly available data from 6,614 HD gene-expansion carriers (HDGECs), we grouped participants into deciles based on baseline CAP score, which ranged from 26 to 229. We used descriptive statistics to characterize data distribution for 25 outcome measures (encompassing motor, function, cognition, and psychiatric/behavioral domains) in each CAP decile. A skewness statistic threshold of ±2 was defined a priori to indicate floor/ceiling effects. Results: We found evidence of floor/ceiling effects in the early premanifest stages of disease for most motor and function assessments (e.g., TMS, TFC) and select cognitive tasks (MMSE, Trail Making tests). Other cognitive assessments, and the HADS-SIS scales, performed well ubiquitously, with no evidence of floor/ceiling effects at any disease stage. Floor/ceiling effects were evident at every disease stage for certain assessments, including PBA-s measures. Ceiling effects were apparent for DCL from onset stages onwards, as expected. Discussion: Developing instruments sensitive to subtle differences in performance at the earlier stages of the disease spectrum, particularly in motor and function domains, is warranted

    Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson's disease:a pharmacogenetic study

    Get PDF
    The treatment of early Parkinson's disease with dopaminergic agents remains the mainstay of symptomatic therapy for this incurable neurodegenerative disorder. However, clinical responses to dopaminergic drugs vary substantially from person to person due to individual-, drug- and disease-related factors that may in part be genetically determined. Using clinical data and DNA samples ascertained through the largest placebo-controlled clinical trial of the monoamine oxidase B inhibitor, rasagiline (ClinicalTrials.gov number, NCT00256204), we examined how polymorphisms in candidate genes associate with the clinical response to rasagiline in early Parkinson's disease. Variants in genes that express proteins involved in the pharmacokinetics and pharmacodynamics of rasagiline, and genes previously associated with the risk to develop Parkinson's disease were genotyped. The LifeTechnologies OpenArray NT genotyping platform and polymerase chain reaction-based methods were used to analyse 204 single nucleotide polymorphisms and five variable number tandem repeats from 30 candidate genes in 692 available DNA samples from this clinical trial. The peak symptomatic response to rasagiline, the rate of symptom progression, and their relation to genetic variation were examined controlling for placebo effects using general linear and mixed effects models, respectively. Single nucleotide polymorphisms, rs2283265 and rs1076560, in the dopamine D2 receptor gene (DRD2) were found to be significantly associated with a favourable peak response to rasagiline at 12 weeks in early Parkinson's disease after controlling for multiple testing. From a linear regression, the betas were 2.5 and 2.38, respectively, with false discovery rate-corrected P-values of 0.032. These polymorphisms were in high linkage disequilibrium with each other (r(2) = 0.96) meaning that the same clinical response signal was identified by each of them. No polymorphisms were associated with slowing the rate of worsening in Parkinson symptoms from Weeks 12 to 36 after correction for multiple testing. This is the largest and most comprehensive pharmacogenetics study to date examining clinical response to an anti-parkinsonian drug and the first to be conducted in patients with early stage Parkinson's disease receiving monotherapy. The results indicate a clinically meaningful benefit to rasagiline in terms of the magnitude of improvement in parkinsonian symptoms for those with the favourable response genotypes. Future work is needed to elucidate the specific mechanisms through which these DRD2 variants operate in modulating the function of the nigrostriatal dopaminergic system

    Fit‐for‐Purpose Biometric Monitoring Technologies: Leveraging the Laboratory Biomarker Experience

    Get PDF
    Biometric Monitoring Technologies (BioMeTs) are becoming increasingly common to aid data collection in clinical trials and practice. The state of BioMeTs, and associated digitally measured biomarkers, is highly reminiscent of the field of laboratory biomarkers two decades ago. In this review, we have summarized and leveraged historical perspectives, and lessons learned from laboratory biomarkers as they apply to BioMeTs. Both categories share common features, including goals and roles in biomedical research, definitions, and many elements of the biomarker qualification framework. They can also be classified based on the underlying technology, each with distinct features and performance characteristics, which require bench and human experimentation testing phases. In contrast to laboratory biomarkers, digitally measured biomarkers require prospective data collection for purposes of analytical validation in human subjects, lack well-established and widely accepted performance characteristics, require human factor testing and, for many applications, access to raw (sample-level) data. Novel methods to handle large volumes of data, as well as security and data rights requirements add to the complexity of this emerging field. Our review highlights the need for a common framework with appropriate vocabulary and standardized approaches to evaluate digitally measured biomarkers, including defining performance characteristics and acceptance criteria. Additionally, the need for human factor testing drives early patient engagement during technology development. Finally, the use of BioMeTs requires a relatively high degree of technology literacy among both study participants and healthcare professionals. Transparency of data generation and the need for novel analytical and statistical tools creates opportunities for precompetitive collaborations

    An attenuated immune response is sufficient to enhance cognition in an Alzheimer's Disease mouse model immunized with amyloid- derivatives

    No full text
    Immunization with amyloid-? (A?) 1-42 has been shown to reduce amyloid burden and improve cognition in Alzheimer's disease (AD) model mice. In a human trial, possible cognitive benefit was found but in association with significant toxicity in a minority of patients. We proposed that immunization with nonfibrillogenic A? derivatives is much less likely to produce toxicity and have previously shown that one such derivative (K6A?1-30) can reduce amyloid burden in mice to a similar extent as A?1-42. Here, we immunized AD model mice (Tg2576) with A?1-30[E18E19] or with K6A?1-30[E18E19]. These peptides were designed to be nontoxic and to produce less T-cell response, which has been linked to toxicity. K6A?1-30[E18E19] induced primarily an IgM response, whereas A?1-30[E18E19] induced an IgG titer that was lower than previously seen with K6A?1-30 or A?1-42. However, both treated animal groups performed better than Tg controls in the radial arm maze. Amyloid burden was similar in A?1-30[E18E19]-vaccinated mice and their Tg controls, whereas the number of medium and small sized plaques was reduced (29-34%) in K6A?1-30[E18E19]-immunized mice compared with Tg controls. Amyloid burden in these mice correlated inversely with plasma IgM levels. The cognitive benefit and amyloid reduction in the K6A?1-30[E18E19]-vaccinated mice are likely to be related to peripheral clearance of A?, because IgM does not cross the blood-brain barrier because of its large size. Our results indicate that these nontoxic A? derivatives produce an attenuated antibody response, which is less likely to be associated with negative side effects while having cognitive benefits

    Rasagiline Ameliorates Olfactory Deficits in an Alpha-Synuclein Mouse Model of Parkinson's Disease

    Get PDF
    <div><p>Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.</p> </div

    Overexpression of α-synuclein in the olfactory bulb of the α-syn transgenic mice.

    No full text
    <p>Immunostaining of human wild-type α-synuclein in OB of <b>A.</b> WT mice and <b>B-D.</b> α-syn mice aged 12 months. <b>A-B.</b> Scale bars: 500 µm. <b>C-D.</b> High magnification of <b>C.</b> the glomerular layer (Gl) and <b>D.</b> the granule cell layer (GCL). Scale bars: 50 µm. α-Syn mice exhibit high expression of human α-synuclein in the different layers of the OB. α-Synuclein immunoreactivity indicates large profiles (arrows) as well as numerous small α-synuclein immunoreactive puncta (arrow heads).</p
    corecore